Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
Home » Tutorials » Stimulated Raman Scattering—Separated Channels
Compatibility:
The purpose of this lesson is to demonstrate light amplification resulting from the stimulated Raman scattering effect.
The layout with its global parameters is shown in Figure 1
Figure 1: Layout and global parameters
The input spectrum (Figure 2) consists of a strong (pump) wave at 193 THz (100W) and four weak (probe) waves at frequencies 188 THz, 183 THz, 178THz and 175.5THz. The powers of the probe-waves are all equal to -99dBm.
Figure 2: Input spectrum
The fiber parameters are relevant to SMF-28 and are specified as “wavelength dependent” (from data files). Constant step-size is used with the maximum nonlinear phase shift equal to 5mrad and the nonlinear refractive index is:
The fractional Raman contribution is ρ = 0.18.
The output spectrum (after 200m of propagation) is shown in Figure 3.
Figure 3: Output spectrum
The gains obtained from Figure 3 are summarized in Table 1.
Table 1 Numerically obtained dependence of the gain on the probe frequency.
Probe frequency [THz]
Gain [dBm]
188
16.252
183
34.106
178
45.02
175.5
9.535
The pump power is 100W and the pump frequency is 193 THz. Fiber length is 200m.
On the other hand, the gain coefficient is given by:
and using the fiber data, it is shown that the numerical results are in agreement (see table 2) with the formula in [1].
Probe frequency [THz]
Im( X1111( vp– vs) )
Υs[ 1 /kmW]
G = 10log(exp(gP0L))[dBm]
188
4.045951e-001
1.28445
16.250
183
9.114571e-001
1.19659
34.103
178
1.251922e+000
1.149963
45.017
175.5
2.678715e-001
1.133812
9.496
Table 2: Analytically obtained results for the gain.
Figure 4: Same asFigure 3, but the pump and one of the signals are converted to “parameterized”.
Note that the same results can be obtained in this using arbitrary configuration of sampled and parameterized signals. Figure 4 shows the same output spectrum (as Figure 3) however the pump and one of the signals are converted to parameterized signals. The numerical values of the gain for each signals (parameterized or sampled) are one and same. Calculations with parameterized signals are faster; however replacing the sampled signals with parameterized is not always possible.