Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
The reconstruction method uses a layer peeling algorithm, a complete description is
found in reference [1]. This method can be implemented after the problem is
approximated by a series of discrete layers, each with a constant coupling coefficient.
At the beginning of the problem, all these coupling coefficients are unknown. The
method uses an iterative approach, in which the first N layers of the profile are
assumed known, and in the next iteration, the coupling coefficient for the N+1 layer is
deduced. The layers are chosen to be of uniform width so that the time it takes for a
wavefront to cross any layer is a constant, Δ. The method uses the fact that the
impulse response at the time 2(N+1)Δ must be independent of all the layers
following the layer N+1. By the property of causality the impulse response at this
instant must be independent of the coupling coefficients to be found in the layers N+2,
N+3, and so on. On the other hand, the coupling coefficients in the first N layers are
assumed known, so by solving the scattering problem with these N layers, the
impulse response for a grating truncated at the Nth layer can be found. Furthermore,
the truncated impulse response from the first N+1 layers can be found if only the
single coupling coefficient at N+1 were known. The truncated impulse response is
then compared to the desired impulse response at time 2(N+1)Δ. By choice of a
suitable value of coupling coefficient in the N+1 layer, the impulse response of the
truncated grating can be made the same as the desired impulse response, from time
0 up to time 2(N+1)Δ. In this way the coupling coefficients in the first N layers are
used to find the coefficient in the N+1 layer. The unknown layers are “peeled” from the
grating one at a time.