Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
To rigorously evaluate the propagation characteristics of an inhomogeneous and/or anisotropic waveguide, a Vectorial wave analysis is necessary, with at least two field components. These formulations are fundamentally more accurate than scalar forms, since they can represent true hybrid modes in a general dielectric waveguide. A semi-vectorial Beam Propagation Method (BPM) can identify polarization dependence; however, only a full Vectorial approach can calculate power coupling between two polarization states.
OptiBPM includes a vector BPM based on the finite-difference schemes (FD-VBPM). This versatile, efficient, and accurate numerical approach has the following main features:
• solves the vectorial modes of a z-invariant waveguide structure with arbitrary index distribution in the cross section and takes both polarization dependence and polarization coupling into consideration.
• models the propagation of vectorial electromagnetic wave in a z-varying waveguide structure with arbitrary cross section.
• handles anisotropic material so that the polarization dependence and coupling due to both materials and geometry can be considered.
• perfectly matched Layers are included in order to effectively absorb the nonphysical radiation waves.
• Wide Angle BPM is implemented using high order Pade recursion, making it possible to simulate multiple propagating modes traveling a widely different off- axis, with no need to accurately guess the “reference” index n0 .
• Formulations can be based on the electric or magnetic field components which are naturally continuous across the dielectric interfaces.
• The axial component is eliminated by using the zero divergence constraint
∇ ⋅ ( n2E) = 0 (Gauss’s Law) for E formulation or ∇ ⋅ H = 0 for the formulation based on magnetic field. Therefore, the transverse components are sufficient to describe the full-vectorial natures of the electromagnetic field.
Note: The inclusion of divergent condition guarantees the complete elimination of spurious modes.
• The formulation is optimized by the use of efficient sparse techniques to solve the resultant complex matrix equations.