Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
Creating a Linear Waveguide Formed by the Titanium Diffusion in Lithium Niobate
Home » Tutorials » Creating a Linear Waveguide Formed by the Titanium Diffusion in Lithium Niobate
Compatibility:
To create a linear waveguide formed by the Titanium Diffusion in Lithium Niobate, perform the following procedure.
Step
Action
1
Create the following dielectric material (see Figure 1):
Name: Cladding
Refractive index (Re:): 1
Figure 1: Profile Designer — Cladding
2
Create the following diffusion material (see Figure 2):
Name: LN1
Figure 2: Profile Designer — LN1
The substrate is defined as diffused material. The name ‘diffused’ in the materials denotes substrates suitable for the diffusion process. By default, the diffused materials have the structure and parameters of Lithium Niobate. As a result, you must choose the desired orientation of the sample and propagation direction. You can change the properties (such as refractive indices and electrooptic coefficients) so that other materials can be modeled, provided that Equation 21 applies and polarization coupling can be neglected.
Once the necessary materials are defined, it is possible to define diffused profiles. There are three predefined diffused processes (see “Titanium Diffusion in Lithium Niobate” on page 71 for more information).
3
Create the following Diffusion–Ti:LiNb03 material (see Figure 3):
Name: Ti:LiNb03_1
Figure 3: Profile Designer — Ti:LiNb03
Note: You can use the default values, change the defaults, or apply functions.
You can change:
• ordinary and extraordinary refractive index
• electrooptic coefficients
• crystal cut
• propagation direction
• polarization
The wavelength input in the profile determines the refractive index boxes in the auto mode, but does not influence simulations. The wavelength of the simulation process is set in “Setting the simulation parameters” on page 321.