Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
OptiFiber The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
OptiConverge is a collaborative integration framework that seamlessly combines two or more Optiwave products (e.g., OptiSystem, OptiSPICE, OptiFDTD, etc.) and other third party products into unified solutions. Designed to streamline complex workflows, it empowers users to achieve their goals faster by harnessing the collective power of our trusted Optiwave tools.
hello syed
you are talking about the optical communication in sea water…optical communication through sea water is possible ….but not without optical fibres may be in future…
with regards
hello..
i think qpsk can be used as dpsk …so that you can convert into dqpsk..qpsk only transfer two bits and dpsk transfer only one bit…so you can convert simply into dqpsk..
with regards
hiii atul…
the problem which you are facing may be due to broken if the fiber ..please check the fiber or replace it with new one..may be something happen..
with regards varinder singh rajput
helo ..sahil..
i mean if she want information about bessel filter and lpf …then for that she must use that book..
i read that book during my btech days..
nothing more.
with regards
helo naazira..
first of all thanks for sharing your problem on optiwave forums..from my point of view i think lpf filters mostly commnly used for demodulation purpose in communication sytem..but laser light or optical light frequency can be used as carrier frequency for modulation..so mostly we are using lpf at the receiver end..and bessel filter are mostly commnly used for frequency modulation…or in wideband fm.
if you require more information about this topic ..then use sanjay sharma.. it will help you..
with regards
helo dhiman…..
you may change the data rate e.g. 20 gbps, 40 gbps and minimize channel spacing to 50ghz and 25 ghz .
And you will find the difference in results.i hope you will do it.
with regards
hiiii .jyoti,
i got ur problem………..A perfect eye diagram contains an immense amount of parametric information about a signal, like the effects deriving from physics, irrespective of how infrequently these effects occur. If a logic 1 is so distorted that the receiver at the far end can misjudge it for logic 0, you will easily discern this from an eye diagram. What you will not be able to detect, however, are logic or protocol problems, such as when a system is supposed to transmit a logic 0 but sends a logic 1, or when the logic is in conflict with a protocol.
with regards
hiiiiiiiii..jyoti,
i got ur problem……..A perfect eye diagram contains an immense amount of parametric information about a signal, like the effects deriving from physics, irrespective of how infrequently these effects occur. If a logic 1 is so distorted that the receiver at the far end can misjudge it for logic 0, you will easily discern this from an eye diagram. What you will not be able to detect, however, are logic or protocol problems, such as when a system is supposed to transmit a logic 0 but sends a logic 1, or when the logic is in conflict with a protocol.
with regards