
OptiSPICE
Python Post Processing

Optoelectronic Circuit Design Software

Version 5.2

OptiSPICE
Python Post Processing
Optoelectronic Circuit Design Software

Copyright © 2016 Optiwave
All rights reserved.

All OptiSPICE documents, including this one, and the information contained therein, is copyright material.

No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means whatsoever,
including recording, photocopying, or faxing, without prior written approval of Optiwave.

Disclaimer
Optiwave makes no representation or warranty with respect to the adequacy of this documentation or the programs which it
describes for any particular purpose or with respect to its adequacy to produce any particular result. In no event shall Optiwave, its
employees, its contractors or the authors of this documentation be liable for special, direct, indirect or consequential damages,
losses, costs, charges, claims, demands, or claim for lost profits, fees or expenses of any nature or kind.

Table of Contents

Python Post Processing...3

How to install and set up the Python post processing feature...4

Python Post Processing Example 1 ..6

Python Post Processing Example 2 ..13

 PYTHON POST PROCESSING

3

Python Post Processing
After completing a simulation, users can initiate Python scripts to access any active
data ports, manipulate the data and create a variety of 2D and 3D views Figure 1

Figure 1 OptiSPICE Python Post Processing feature

New “Launch Python” button automatically
initiates the python script setup for the project
and displays calculation/manipulation results

Signals from any monitor/probe can be accessed
and manipulated to create customized graphs
such as eye diagram analyzers, histograms, etc..

This document describes how to setup the Python post-processing feature for
OptiSPICE and provides examples on how to access and view simulation data using
Python signal retrieval and plotting functions.

This chapter is divided into three sections:

• How to install and set up the Python post processing feature - This procedure
shows you how to download and install WinPython so that you can view
simulation data from OptiSPICE using Python’s feature rich processing and
graphing tools

• Python Post Processing Example 1 - This tutorial shows you how to setup a
Python script that can be called after running a project simulation and
demonstrates how to launch and view electrical and optical signals using Python

• Python Post Processing Example 2 - This tutorial shows you how Python can be
used to display multi-window plots; in this case the characteristics of a long metal
contact modeled as a transmission line used for a traveling wave modulator with
a 50 ohm load.

 PYTHON POST PROCESSING

4

How to install and set up the Python post processing feature

Before being able to perform Python post processing of simulation results, the
following steps need to be performed:

Step Action

1 Proceed to the following web link:
https://sourceforge.net/projects/winpython/files/WinPython_3.5/

2 Under the Parent folder heading, select (left-click) the link for “3.5.2.2”

3 Select (left-click) the following link: “WinPython-64bit-3.5.2.2.exe” (see
Figure 2)
A dialog box will appear confirming if you would like to save the file to your
computer

Figure 2 WinPython Distributable File to download

4 Select Save File

5 After completion of the download proceed to the location where the
WinPython executable was downloaded and left double-click on the
executable program: “WinPython-64bit-3.5.2.2.exe”

6 Select Run and then select I Agree (for the license agreement)

7 Confirm or set a new Destination Folder where you would like to install
WinPython and select “Install”
By default WinPython will be installed on your Windows Desktop.

 PYTHON POST PROCESSING

5

8 Proceed to the following folder location “C:\Program Files\Optiwave
Software\OptiSPICE 5\scripts\Python”, right-click on the file “getSignals.py”
and select Copy

9 Proceed to the folder location where WinPython has been installed
(WinPython-64bit-3.5.2.2) and open the folder: “python-3.5.2.amd64”

10 Select and open the folder “Lib”.

11 Right-click and select “Paste” to copy the file “getSignals.py” to this
directory.

End of procedure

 PYTHON POST PROCESSING

6

Python Post Processing Example 1

This tutorial shows you how to setup a Python script that can be called after running
a simulation and demonstrates how to launch and view electrical and optical signals
using Python.

Configuring a simulation to link a Python post processing script with an
OptiSPICE design file

Step Action

1 Start OptiSPICE Schematics and open the file
“PythonPostProcessingExample1.osch” located at OptiSPICE 5.2
Samples\Python script examples\Example1_ElectricalAndOpticalSignals

2 Double left-click anywhere on the design to open the Simulation Setup
parameters dialog box.

3 Under the Main tab select the gray box next to the parameter Python file
name

4 Ensure that the file “PlotSignals.py” has been selected and select Open

Note: The file “PlotSignals.py” should be located within the same folder as
the OptiSPICE Schematic “PythonPostProcessingExample1.osch”

5 Copy the directory location information for WinPython (for example
C:\Users\User1\Desktop\WinPython-64bit-3.5.2.2\python-3.5.2.amd64)

6 Select the Value field next to the parameter Script Engine Execution Path
and paste the WinPython directory information into the field box (see
Figure 3)

Note: It is important to ensure that any text information previously contained
in the field box (if this is the case) is completely overwritten by the new
directory information.

 PYTHON POST PROCESSING

7

7 Select OK to close the Simulation Setup parameters dialog box

Figure 3 Setup information for Python Post Processing

 PYTHON POST PROCESSING

8

Running the simulation and viewing post processed data using Python

Step Action

1 Select Analysis/Run
The Simulation Progress dialog box will appear

2 After completion of the simulation, select the Launch Python action button
at the bottom of the dialog box (see Figure 4)
The terminal output of the executed Python script will be captured via a
windows command prompt (see Figure 5)

Figure 4 Launch Python button

Figure 5 Terminal output from Python script

 PYTHON POST PROCESSING

9

A total of seven figures will be produced (an example of Figure 3 is shown in Figure 6)

• Figure 1: Voltage vs. time for bitgen1 port 1

• Figure 2: Current output of bitgen1 port 1

• Figure 3: Magnitude and phase of the laser output

• Figure 4: Real and imaginary parts of the laser output

• Figure 5: Reflection from mirror1

• Figure 6: Output power of laser in frequency domain

These figures are created from the matplotlib.pyplot library (which is included with
the installation of WinPython). For further information on how to use and program
various plots based on this library please go to: http://matplotlib.org/

Figure 6 Magnitude and phase of the laser output (from PythonPostProcessingExample1.osch)

 PYTHON POST PROCESSING

10

Overview of the Python script program PlotSignals.py

In this example we use the Python script file PlotSignal.py. This script has been
created specifically to access and display both optical and electrical signal results
from any OptiSPICE simulation. The following describes the contents of the file and
how to configure its functions for your own simulation models.

Accessing simulation results

The following code is used at the beginning of PlotSignal.py. to access the simulation
results:

The function sys.argv[1] is used to access the XML file name associated with the
simulation results (this action is performed after selecting the Launch Python
button). It is also possible to directly use the name of the XML file directly to run the
python script.

Signal retrieval functions

There are two main functions that can be used to retrieve the simulation data,
getElectricalSignal and getOpticalSignal.

getElectricalSignal function

The getElectricalSignal is structured as follows:

[x, y1, y2, Formats, labels] = getElectricalSignal(root, data, DevName, SigType, PortNum,
Domain):

The right-hand side of the getElectricalSignal function specifies the probe location
and port number and the type and format of the electrical input data:

• “root” stores the processed XML file.

• “data” contains all the simulation results.

• “DevName” specifies the name of the device or signal where a probe is located.

• “SigType” defines whether to access current data (‘I’) or voltage data (‘V’).

• “PortNum” specifies the port number where the probe is located (set to ‘-1’ if the
probe is on a signal).

• “Domain” can be set to 'time' (for time domain data) or ‘FFT’ (for frequency
domain results).

 PYTHON POST PROCESSING

11

The left-hand side of the getElectricalSignal function specifies the structure of the
electrical output data:

• “x” represents time (s) or frequency (Hz) depending on the simulation.

• “y1” represents the magnitude or real part of the signal.

• “y2” represents the phase or imaginary part of the signal (it will be 0 for transient
simulations).

• “Formats” defines the output format. It can be scalar (transient), rectangular
(frequency domain) or polar (frequency domain).

• “Labels” is used to specify the label of the signal.

For example the following function example is used to retrieve the time-domain,
output current from port 1 of the device “bitgen1”:

[t,Im1,Ip1,formats,labels] = sig.getElectricalSignal(root,data,'bitgen1','I',1,'time')

getOpticalSignal function

The getOpticalSignal function is structured as follows:

[x, y1, y2, Lambda, Formats, Labels] = getOpticalSignal(root, data, DevName, Port, OutType,
ChanNum, Direction, ModeNum, Pol, Domain, Format)

The right-hand side of the getOpticalSignal function specifies the probe location and
port number and the type and format of the optical input data:

• “root” stores the processed XML file.

• “data” contains all the simulation results.

• “DevName” specifies the name of the device or signal where a probe is located.

• “Port” specifies the port number where the probe is located.

• “OutType” follows the same conventions as the optical probe: OptFields,
OptPower, OptPhase, OptChirp.

• “ChanNum” specifies the wavelength channel number (0 to n).

• “Direction” defines whether to access the forward or backward field data.

• “ModeNum” specifies the mode number (0 to n).

• “Pol” defines whether to access the ‘x' or 'y' polarization data

• “Domain” can be set to 'time' (for time domain data) or ‘FFT’ (for frequency
domain results).

• “Format” specifies the data format (MAGPHI: Mag-Phase; CMPLX: Real/Imag;
MAG: Mag only).

The left-hand side of the getOpticalSignal function specifies the output structure of the
optical probe data:

• “x” represents time (s) or frequency (Hz) depending on the simulation.

• “y1” represents the magnitude or real part of the signal.

• “y2” represents the phase or imaginary part of the signal

• “Lambda” is used to specify the list of wavelengths.

 PYTHON POST PROCESSING

12

• “Formats” defines the output format. It can be scalar (transient), rectangular
(frequency domain) or polar (frequency domain).

• “Labels” is used to specify the label of the signal.

For example the following function example is used to retrieve the time-domain, field
magnitude and phase from port 3 of the laser device “laservc1”:

[t,LaserOutMag,LaserOutPhase,Lambda1,formats,labels] =
sig.getOpticalSignal(root,data,'laservc1',3,'OptFields',0,'forward',0,'x','time','MAGPHI')

Also specified in this function is the forward propagating signal (‘forward’), the X
polarization data (‘x’), channel 0 (0) and mode number 0 (0).

 PYTHON POST PROCESSING

13

Python Post Processing Example 2

In this example an AC simulation is used to measure the characteristics of a long
metal contact modeled as a transmission line used for a traveling wave modulator with
a 50 ohm load.

Configuring a simulation to link a Python post processing script with an
OptiSPICE design file

Step Action

1 Start OptiSPICE Schematics and open the file
“PythonPostProcessingExample2.osch” located at OptiSPICE 5.2
Samples\Python script examples\Example2_Sparameters

2 Double left-click anywhere on the design to open the Simulation Setup
parameters dialog box.

3 Under the Main tab select the gray box next to the parameter Python file
name

4 Ensure that the file “SparamScript.py” has been selected and select Open

Note: The file “SparamScript.py” should be located within the same folder as
the OptiSPICE Schematic “PythonPostProcessingExample2.osch”

5 Copy the directory location information for WinPython (for example
C:\Users\User1\Desktop\WinPython-64bit-3.5.2.2\python-3.5.2.amd64)

6 Select the Value field next to the parameter Script Engine Execution Path
and paste the WinPython directory information into the field box (see
Figure 3)

Note: It is important to ensure that any text information previously contained
in the field box (if this is the case) is completely overwritten by the new
directory information

7 Select OK to close Simulation Setup parameters dialog box

 PYTHON POST PROCESSING

14

Running the simulation and viewing post processed data using Python

Step Action

1 Select Analysis/Run
The Simulation Progress dialog box will appear

2 After completion of the simulation, select the Launch Python action button
at the bottom of the dialog box (see Figure 7)
The terminal output of the executed Python script will be captured via a
windows command prompt (see Figure 8)

Figure 7 Launch Python button

Figure 8 Terminal output from Python script

 PYTHON POST PROCESSING

15

The simulation output is processed in Python to generate various characteristics for
a transmission line such as attenuation, effective index of microwave and
characteristic impedance. A total of four figures are produced (integrated into one
display window - see Figure 9).

• S21 (dB) vs Frequency (GHz)

• Characteristic impedance vs Frequency (GHz)

• Attenuation (dB/mm) vs Frequency (GHz)

• Effective index of microwave vs Frequency (GHz)

These figures are created from the matplotlib.pyplot library (which is included with
the installation of WinPython). For further information on how to use and program
various plots based on this library please go to: http://matplotlib.org/

Figure 9 Frequency domain characteristics of the TWMZM generated by Python post processing

 PYTHON POST PROCESSING

16

Optiwave
7 Capella Court
Ottawa, Ontario, K2E 7X1, Canada

Tel.: 1.613.224.4700
Fax: 1.613.224.4706

E-mail: support@optiwave.com
URL: www.optiwave.com

	Table of Contents
	Python Post Processing
	How to install and set up the Python post processing feature
	Python Post Processing Example 1
	Configuring a simulation to link a Python post processing script with an OptiSPICE design file
	Running the simulation and viewing post processed data using Python
	Overview of the Python script program PlotSignals.py
	Accessing simulation results
	Signal retrieval functions
	getElectricalSignal function
	getOpticalSignal function

	Python Post Processing Example 2
	Configuring a simulation to link a Python post processing script with an OptiSPICE design file
	Running the simulation and viewing post processed data using Python

